\require{AMSmath}

3. Uitwerkingen

1.$ \eqalign{ & e^{2x} - 4e^x = 45 \cr & (e^x )^2 - 4e^x - 45 = 0 \cr & y = e^x \cr & y^2 - 4y - 45 = 0 \cr & (y - 9)(y + 5) = 0 \cr & y = 9 \vee y = - 5 \cr & e^x = 9 \vee e^x = - 5\,\,(v.n.) \cr & x = 2\ln (3) \cr} $

2.$ \eqalign{ & 3^x \cdot 3^{x + 2} = 9 \cr & 3^{x + x + 2} = 3^2 \cr & 3^{2x + 2} = 3^2 \cr & 2x + 2 = 2 \cr & 2x = 0 \cr & x = 0 \cr} $

3.$ \eqalign{ & x \cdot 2^{2x} = x \cdot \sqrt 8 \cr & x = 0 \vee 2^{2x} = 2^{1\frac{1} {2}} \cr & x = 0 \vee 2x = 1\frac{1} {2} \cr & x = 0 \vee x = \frac{3} {4} \cr} $

4.$ \eqalign{ & x \cdot e^{x + 1} - e^x = 0 \cr & x \cdot e \cdot e^x - e^x = 0 \cr & e^x \left( {x \cdot e - 1} \right) = 0 \cr & e^x = 0\,\,(v.n.) \vee x \cdot e - 1 = 0 \cr & x \cdot e = 1 \cr & x = \frac{1} {e} \cr} $

5.$ \eqalign{ & 4x\left( {2^x - 3} \right) = 0 \cr & 4x = 0 \vee 2^x - 3 = 0 \cr & x = 0 \vee 2^x = 3 \cr & x = 0 \vee x = {}^2\log (3) \cr} $

©2004-2024 WisFaq