Loading jsMath...
\require{AMSmath}

6. De lenzenformule

Gegeven: \eqalign{ & \frac{1} {f} = \frac{1} {v} + \frac{1} {b}}

  • Druk f, v en b uit in de andere variabelen

Uitwerking


\eqalign{   & \frac{1} {f} = \frac{1} {v} + \frac{1} {b}  \cr   & \frac{1} {f} = \frac{b} {{vb}} + \frac{v} {{vb}}  \cr   & \frac{1} {f} = \frac{{b + v}} {{vb}}  \cr   & f = \frac{{vb}} {{b + v}} \cr}


\eqalign{   & \frac{1} {f} = \frac{1} {v} + \frac{1} {b}  \cr   & \frac{1} {v} = \frac{1} {f} - \frac{1} {b}  \cr   & \frac{1} {v} = \frac{b} {{bf}} - \frac{f} {{bf}}  \cr   & \frac{1} {v} = \frac{{b - f}} {{bf}}  \cr   & v = \frac{{bf}} {{b - f}} \cr}


\eqalign{   & \frac{1} {f} = \frac{1} {v} + \frac{1} {b}  \cr   & \frac{1} {b} = \frac{1} {f} - \frac{1} {v}  \cr   & \frac{1} {b} = \frac{v} {{fv}} - \frac{f} {{fv}}  \cr   & \frac{1} {b} = \frac{{v - f}} {{fv}}  \cr   & b = \frac{{fv}} {{v - f}} \cr}


©2004-2025 WisFaq