De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Logaritmen

Raaklijn door oorsprong

Voor y=ax en y=3x-ln(6x) mag maar 1 oplossing hebben. Hoe nu a bepalen?

roger
15-2-2024

Antwoord

Printen
Hier is een plot van $y=3x-\ln(6x)$ met daarbij $y=3x$ en $y=2x$,
en ook $y=(3-\frac6e)x$.
q98081img2.gif
Dat illustreert dan je precies één snijpunt hebt als $a\ge3$ want dan geldt na het snijpunt links van $\frac16$ dat $ax\ge 3x > 3x-\ln(6x)$, zodat er later geen snijpunten meer komen.

Verder: als $a < 3$ dan kun je $a=3-b$ schrijven met $b > 0$. Dan hebt je te maken met $3x-bx$ en $3x-\ln(6x)$. Dan krijg je later nog een snijpunt, mits $b$ niet al te groot is. Als $b$ groter wordt krijgen we $bx > \ln(6x)$ voor alle $x$ en dus helemaal geen snijpunt.
Er is één $b$ waarbij de lijn raakt. Dat gebeurt als $y=bx$ aan $y=\ln(6x)$ raakt. Dus als $bx=\ln x + \ln6$, en tegelijk $b=\frac1x$. Vul $x=\frac1b$ in, dat geeft een vergelijking voor $b$, namelijk $1=-\ln b+\ln 6$, en dus $b=6/e$.

Dus één snijpunt als $a\ge3$, twee als $3\ge a > 3-\frac6e$, een raakpunt als $a=3-\frac6e$ en geen snijpunt als $3-\frac6e > a$.

kphart
15-2-2024


Tetratrie van 2 onbekende getallen is een bekent getal

Ik heb een vraag over de omgekeerde tetratie.
Stel ik weet x^^x, als x bekent is bijv. 3, dan is 3^^3=3^3^3=3^27=7.625.597.484.987, tot zover is het niet moeilijk. Maar terugrekenen is een heel ander verhaal.
Ik bedoel x^^x=7.625.597.484.987, wat is dan x, nou ik weet dat het toevallig 3 moet zijn. Het is nog steeds niet moeilijk.

Het wordt wel heel moeilijk als ik een willekeurig getal ga invullen, zodat "x", niet meer een geheel getal is.

Bijv. als x^^x=10
Hoe bereken je dan x?
Is dit wel te berekenen?
Met welke formule?
Als het tegenovergestelde van x^x de "superwortel" heet. Hoe heet het tegenovergestelde van x^^x dan?
En wat is de waarde van x in dit geval op zo'n 1000 cijfers achter de komma?

J
21-7-2024

Antwoord

Printen
Voorzover ik kan zien is \(a \uparrow\uparrow b\) alleen gedefinieerd voor natuurlijke getallen $b$. In een torentje kun je alleen een geheel aantal $a$-tjes kwijt.

Hoe zou je $\pi\uparrow\uparrow\pi$ afspreken? Hoe ziet een torentje met $\pi$ maal een $\pi$ eruit?
Je vergelijking $x\uparrow\uparrow x=10$ is (nog) niet goed gedefinieerd.

Dus over eventuele oplossingen kunnen we nog niets zeggen.

Zie Wikipedia: Tetration

kphart
22-7-2024


home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3