\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Kettingregel

Hallo,
Ik snap niet hoe de kettingregel (primitiveren) toegepast moet worden bij ingewikkeldere functies, welk deel is dan zeg maar het 'hartje' waarvan je de afgeleide door 1 deelt? Bijvoorbeeld in de vorm van f(x)=a·x3·eb·x2

Leerling bovenbouw havo-vwo - zaterdag 6 januari 2024

Antwoord

De kettingregel gaat over differentiëren, maar je noemt primitiveren. Bedoel je misschien de substitutieregel? En als je iets door $1$ deelt gebeurt er niets, dus ik vermoed dat je daar ook wat anders bedoelt. En `hartje' is geen algemeen bekende term; is dat iets wat je docent gebruikt? Wat bedoelt die daarmee?

Maar goed, als je je functie wil primitiveren moet je er even goed naar kijken. Ik zou de exponent in $e^{bx^2}$ willen vervangen door een enkele variabele $u$.
Dus: we proberen $u=bx^2$, dan geldt $\mathrm{d}u=2bx\,\mathrm{d}x$. Dit kun je in $\int f(x)\,\mathrm{d}x$ invullen:
$$\int a\cdot x^3\cdot e^{bx^2}\,\mathrm{d}x=\int a\cdot x^2\cdot e^{bx^2}\cdot x\,\mathrm{d}x =\int a\cdot\frac ub\cdot e^u\cdot\frac1{2b}\,\mathrm{d}u
$$Je moet dan dus
$$\frac a{2b^2}\int u\cdot e^u\,\mathrm{d}u
$$doen.

Dat kan door goed kijken en even proberen: de afgeleide van $ue^u$ zelf is $ue^u+e^u$, dus de afgeleide van $ue^u-e^u=e^u(u-1)$ is $ue^u+e^u-e^u=ue^u$. Je kunt ook partieel integreren.

Hoe dan ook, er komt
$$\frac a{2b^2}e^u(u-1)+c = \frac a{2b^2}e^{bx^2}(bx^2-1) + c
$$als primitieve van $f(x)$.

kphart
zondag 7 januari 2024

©2004-2024 WisFaq