Printen \require{AMSmath}

Een gelijkbenige rechthoekige driehoek

Gegeven is een gelijkbenige rechthoekige driehoek ABC, waarbij M het midden is van AC. Verder is F een punt tussen B en C op de lijn BC en de lijn FM snijdt de lijn AB in het punt E. Toon aan dat lijnstuk EF langer is dan AC.
Zou iemand dit kunnen bewijzen?

Leerling bovenbouw havo-vwo - vrijdag 19 april 2024

Antwoord

Ik niet: teken in je plaatje $F$ maar heel dicht bij $B$, dan wordt $FE$ heel kort en korter dan $AC$.
Aan de andere kant: als je voor $F$ het midden van $BC$ neemt dan snijden $MF$ en $AB$ elkaar niet.

Het lijkt me dat de vraag onvolledig is.

©2004-2024 WisFaq