Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Formule van Moivre

hallo,
kunt u mij aub uitleggen wat eigenlijk de formule van Moivre voorstelt?en graag een voorbeeld erbij!
alvast bedankt,
Milad

Milad
Leerling bovenbouw havo-vwo - maandag 17 februari 2003

Antwoord

De formule van deMoivre geeft een snel resultaat als je een complex getal tot een zekere macht moet verheffen.
In de boeken lees je meestal zoiets als:
als z = r.(cos$\delta$ + i.sin$\delta$), dan is zn = rn. (cos(n$\delta$) + i.sin(n$\delta$)).
Hierin is r de modulus van het complexe getal z en $\delta$ het argument.
Kortweg zegt de stelling dus: de modulus wordt ook tot de n-de macht genomen en het argument wordt met n vermenigvuldigd.

Als voorbeeld: neem z = 2.(cos45° + i.sin45°) ,dan is z3 gelijk aan 8.(cos135° + i.sin135°)

De regel vermijdt dus een moeizaam gereken van herhaald vermenigvuldigen. In het voorbeeld kun je de hoek natuurlijk ook in radialen uitdrukken.

MBL
maandag 17 februari 2003

©2001-2024 WisFaq