Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Romaans venster

Beste,
Tijdens wiskunde zijn we nu bezig met extremumproblemen. Als taak hebben we er een gekregen en ik zit helemaal vast. Onze opdracht was om een maximum (en de daarbij horende breedte en hoogte) te berekenen van een Romaans venster (dus een halve cirkel op een rechthoek)...

Gegeven is de omtrek: 12 meter.

Om te beginnen had ik voor de opp de formule: l (=lange zijde rechthoek)·x + (p/4·x). Dan heb ik een nevenwaarde voor l gevonden: 6-1,2854x. Dan heb ik l ingevuld maar nu zit ik vast... Kun je mij helpen? Deze taak is erg belangrijk...

Alvast bedankt!!!!

Emily
2de graad ASO - zaterdag 18 oktober 2014

Antwoord

Hoe pak je dat aan?

Eerst maar 's een tekening en een aantal variabelen kiezen:

q74102img1.gif

De omtrek is 12. Hiermee kan je $h$ uitdrukken in $d$. Je kunt de oppervlakte ook uitdrukken in $h$ en $d$. Als je daarna $h$ vervangt door de uitdrukking die je gevonden hebt n.a.v. de omtrek krijg je de oppervlakte uitgedrukt in $d$. Je kunt dan met de afgeleide de waarde van $d$ bepalen voor de maximale oppervlakte.

Probeer 't maar 's!

WvR
zaterdag 18 oktober 2014

 Re: Romaans venster 

©2001-2024 WisFaq