Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Particuliere oplossing

Hallo,
Ik heb een vraagje over de volgende diff. verg.

y"+2y'+10y=3-sin(t)

als je nou de particuliere oplossing wil berekening, hoe is dan de eerste stap ik weet dat voor sint(t) het is:
a新in(t)+b搾os(t)
maar hoe is het voor -sin(t)?
is dit gelijk aan
-a新in(t) -b搾os(t)?

hartelijk bedankt voor het antwoord
alvast
Lennard

Lennar
Student hbo - woensdag 8 juni 2005

Antwoord

dag Lennard,

De vuistregel is: zoek de particuliere oplossing in de vorm van het rechterlid en al zijn afgeleiden.
Met 'in de vorm van' wordt bedoeld, dat je de functiesoort met een onbekende constante kunt vermenigvuldigen.
Als er alleen een sin(t) voorkomt in het rechterlid, dan is de particuliere oplossing inderdaad a新in(t) + b搾os(t).
Als er -sin(t) of 83新in(t) staat, dan is nog steeds de algemene vorm a新in(t) + b搾os(t).
Maar in dit geval staat er ook nog een 3 in het rechterlid.
Dus de particuliere oplossing moet ook nog een constante bevatten.
Dus:
a新in(t) + b搾os(t) + c
groet

Anneke
vrijdag 10 juni 2005

©2001-2024 WisFaq