Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Geometrische verdeling

Een eerlijk muntstuk wordt geworpen totdat er voor de eerste maal kop boven komt. Wat is de kans dat het aantal worpen oneven is?

Dat lijkt mij een geometrische verdeling te zijn. Je kans neemt af naarmate je meer pogingen onderneemt met P(X=k) = pqk, in dit geval dus 1/2·(1/2)k. Maar hoe je daar moet uit opmaken wat de kans op een oneven aantal pogingen is... ontgaat mij volledig. Iemand een idee?

S
Student universiteit - donderdag 21 augustus 2003

Antwoord

Hallo Jenny :-)
De kans is dus de som van de volgende kansen:
kop na 1 keer: 1/2
kop na 3 keer: 1/8 (want het moet MMK zijn)
kop na 5 keer: 1/32 (want het moet MMMMK zijn)
etc.
De som van dit alles is de som van een meetkundige reeks met rede of quotiënt 1/4 en beginterm 1/2
Formule: 1/2 * 1/1-0.25 = 2/3

Groeten en nog veel statistiekplezier,
Christophe.

Christophe
donderdag 21 augustus 2003

©2001-2024 WisFaq