De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Deelruimtes en vectorruimtes

In de volgende vraag moet je laten zien dat de inclusies gelden, ik kom alleen niet uit hoe ik laat zien dat de eerste R in l^2 zit?

Lana
Student universiteit - donderdag 18 januari 2024

Antwoord

Zie ook deze vraag voor een nauwkeurigere beschrijving van $\mathbb{R}_0^\infty$.
Als $x\in\mathbb{R}_0^\infty$ zit is er een $N$ met $x_n=0$ voor $n\ge N$. Dan volgt ook dat voor $n\ge N$ geldt dat $x_1^2+x_2^2+\cdots+x_n^2=x_1^2+x_2^2+\cdots+x_N^2$.
Dus $\lim_{n\to\infty}x_1^2+x_2^2+\cdots+x_n^2$ is gelijk aan ... ?

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 18 januari 2024



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3