De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Taylorpolynomen restterm

Ik heb een vraag over de taylorpolynomen. Bij het benaderen van een getal mbv een taylorpolynoom heb je een restterm. Voor het berkenen van de restterm gebruiken we Rn(x) = (fn+1(s))/((n+1)) · (x-a)n+1. Ik begrijp echter niet hoe de s wordt gekozen bij het berekenen van de restterm. Kan iemand mij dit uitleggen?

Plinna
Student universiteit - woensdag 7 december 2022

Antwoord

De $s$ wordt niet gekozen; de stelling zegt dat er een $s$ bestaat, tussen $a$ en $x$ (en afhankelijk van $x$ en van $n$) zó dat
$$f(x)=T_n(x) +R_n(x)
$$Je gebruikt dit om $R_n(x)$ af te schatten, niet om hem te berekenen.
Bijvoorbeeld:
$$\sqrt x= 1+\frac12(x-1)+R_1(x)
$$met
$$R_1(x) = -\frac14s^{-\frac32}\cdot\frac1{2!}(x-1)^2
$$Dat vertelt ons bijvoorbeeld dat $\sqrt x < 1+\frac12(x-1)$ als $x\neq1$.
Nu kun je $\sqrt{\frac32}$ benaderen met $1+\frac12(\frac32-1)=1+\frac14$.
En $R_1(\frac32)$ kun je afschatten, eerst $x=\frac32$ invullen:
$$-\frac18\cdot s^{-\frac32}\cdot\frac14 = -\frac1{32}\cdot s^{-\frac32}
$$Van $s$ weet je alleen dat $1 < s < \frac32$, dus het beste wat je kunt zeggen is dat $s^{-\frac32}$ kleiner dan $1$ is.
En dus in ieder geval
$$\frac54 > \sqrt{\frac32} > \frac54-\frac1{32}
$$

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 7 december 2022
 Re: Taylorpolynomen restterm 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3