De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Hoekpunten van reeks lineaire vergelijkingen

Gegeven zijn een reeks lineaire ongelijkheden in $ $\mathbf{R}$ ^n$. Deze ongelijkheden bakenen een gebied af (niet per se gesloten). Gevraagd wordt om de hoekpunten te bepalen van dit gebied, maar dit gebied is niet per se gesloten. Dat betekent oneindigheid ook wordt gezien als hoekpunt (denk aan een /\ figuur, hier hebben we dus 3 hoekpunten waarvan de onderste twee coordinaten hebben in -$ $\infty $ $). Dus zowel negatief als positief $ $\infty $ $ zijn hierbij geldig als coordinaten voor hoekpunten. Ik kom er echter niet uit, behalve de vergelijkingen aan elkaar gelijk stellen om snijpunten te bepalen loop ik vast, vooral omdat de lijnen dus tot de oneindigheid kunnen doorgaan. Hulp is gewenst.

Erik
Student universiteit - dinsdag 29 november 2022

Antwoord

Kun je de ongelijkheden geven? Dat praat iets makkelijker. Overigens 'niet gesloten' betekent, denk ik, dat de lijn zelf niet meedoet, maar dat maakt voor de berekening, volgens mij, verder niet uit.

Je kunt bij het stellen van een vraag ook een plaatje meesturen als je dat handiger vindt.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 29 november 2022
 Re: Hoekpunten van reeks lineaire vergelijkingen 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3