De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Partiële afgeleide van hogere orde

Veronderstel dat f: R3$\to$R een functie is die continue partiële afgeleiden heeft van minstens tot de tweede orde. Beschouw nu de functie:

g: R2$\to$R:(x,y)$\to$g(x,y) = f(x2y, x+y, x·e3y).

Argumenteer dat g continue partiële afgeleiden heeft van minstens tot de tweede orde. Bereken ook de tweede orde partiële afgeleiden van g in termen van de partiële afgeleiden van f.

Ik heb wat moeite met deze afgeleiden te berekenen. De eerste en tweede afgeleide berekenen van de eerste orde lukt me wel, maar van de eerste orde naar tweede orde overgaan vind ik heel moeilijk. Zou iemand misschien een bewerking met wat uitleg hiervan willen geven zodat ik verder kan?

Alvast bedankt voor de hulp!

Jade L
Student universiteit - woensdag 14 april 2021

Antwoord

Het is wat werk maar je moet op het resultaat van $\frac\partial{\partial x}g(x,y)$ bij differentiëren naar $x$ (en $y$) de productregel toepassen op de drie termen, bijvoorbeeld op $D_1f(x^2y,x+y,xe^3y)\cdot 2xy$:
$$\frac\partial{\partial x}D_1f(x^2y,x+y,xe^3y)\cdot 2xy + D_1f(x^2y,x+y,xe^3y)\cdot \frac\partial{\partial x}2xy
$$en
$$\frac\partial{\partial x}D_1f(x^2y,x+y,xe^3y)
$$gaat net als $\frac\partial{\partial x}f(x^2y,x+y,xe^3y)$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 15 april 2021



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3