De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

De waarden van a, b en c vinden

Ik heb een vraag. ik moet a b en c bepalen en ik 2 matrices gekregen:
A = a a a              A^-1 = 0 -2 a
6 5 b -b 5 -2
13 10 c 5 -3 a
Ik heb AA^1 = I uitgerekend en ik kom dus verschillende vergelijkingen uit:
-ab + a5 -2a + a5 - 3a a2 - 2a + a2 1 0 0
-5b + 5b 13 - 3b 6a - 10 + ab = 0 1 0
-10b + 5c 24 - 3c 13a - 20 + ac 0 0 1

ik zou een stelsel moeten krijgen van a b en c en zo kan ik dan de onbekenden uitrekenen en voor a = 1 b = 4 en c = 8 uitkomen. maar ik snap niet hoe ik het moet bekijken en hoe ik dan dus aan de stelsels en oplossing kom.

elke
3de graad ASO - donderdag 21 januari 2021

Antwoord

Hallo,

Ik veronderstel het onderstaande:

A =
en A-1 =
Dan bekom ik als product :

C =


en als je goed kijkt, bekom jij dat ook.

Uit c13 volgt dat a=0 of a=1
a=0 moet je uitsluiten, want dan kan c11 niet gelijk zijn aan 1.
Dus a = 1 en dan moet 5 - b = 1. Waaruit b = 4.
Uit c32 volgt dat c = 8.
Dat zijn de verwachte uitkomsten.

Maar de andere elementen kloppen dan niet.
Dus vermoed ik dat je de gegeven matrices niet juist hebt ingegeven.
Kijk eens na.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 21 januari 2021



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3