De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Splitsbaar?
Ok; zelf heb ik nog geprobeerd om met behulp van het '2x min=plus'-trucje de laatste factor (2+x)2+4 op dezelfde manier te vereenvoudigen maar dat leverde uiteraard niets op. AntwoordNee, inderdaad $(2+x)^2+4$ kun je niet verder als product schrijven. Immers, zou je hem kunnen schrijven als $(x+a)(x+b)$, dan zouden $x=-a$ en $x=-b$ nulpunten zijn van $(2+x)^2+4$. Maar $(2+x)^2+4 \geq 4$, want een kwadraat is altijd groter of gelijk aan 0.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|