De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs dat een punt op de lijn uniek is

Gegeven zijn $A$ en $B$ elementen van n. Zij C een element van n op de lijn $AB$, met bijbehorende vector $c = (1 - \lambda) a + \lambda b$ voor een zekere reëel getal $\lambda$. Stel nu dat C' ook een element is van n met de eigenschap dat $d(A,C') = d(A,C)$ en $d(B,C') = d(B,C)$. Waarbij $d$ de Euclidische metriek is. Te bewijzen is dat $C=C'$. Er moet gebruik worden gemaakt van $d(A,C) = |\lambda| d(A,B)$ en $d(B,C) = |1-\lambda| d(A,B)$.

Tot nu toe ben ik erachter gekomen dat we allereerst met de driehoeksongelijkheid een gelijkheid hebben. Toen heb ik $C'$ geschreven als bijbehorende $c'$ vector met scalair $\lambda'$. Echter lukt het dan niet om de scalairen $\lambda$ en $\lambda'$ aan elkaar gelijk te krijgen. Ik vermoed dat dit wellicht niet de juiste strategie is. Hulp is gewenst.

Dennis
Student universiteit - vrijdag 14 februari 2020

Antwoord

Er is niet gegeven dat $C'$ op de lijn ligt, dus die $\lambda'$ heb je nog niet. Dat $C'$ op de lijn ligt is een deel van wat je moet bewijzen.
Teken eens een paar plaatjes: met $C$ tussen $A$ en $B$ en met $C$ aan de andere kant van $A$ ten opzichte van $B$. Teken in beide plaatjes de cirkels door $C$ met middelpunten $A$ en $B$. Valt je iets op? Kun je dat bewijzen?

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 14 februari 2020
 Re: Bewijs dat een punt op de lijn uniek is 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3