De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Bewijs dat een punt op de lijn uniek isGegeven zijn $A$ en $B$ elementen van n. Zij C een element van n op de lijn $AB$, met bijbehorende vector $c = (1 - \lambda) a + \lambda b$ voor een zekere reëel getal $\lambda$. Stel nu dat C' ook een element is van n met de eigenschap dat $d(A,C') = d(A,C)$ en $d(B,C') = d(B,C)$. Waarbij $d$ de Euclidische metriek is. Te bewijzen is dat $C=C'$. Er moet gebruik worden gemaakt van $d(A,C) = |\lambda| d(A,B)$ en $d(B,C) = |1-\lambda| d(A,B)$. AntwoordEr is niet gegeven dat $C'$ op de lijn ligt, dus die $\lambda'$ heb je nog niet. Dat $C'$ op de lijn ligt is een deel van wat je moet bewijzen.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|