De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Binomium Newton

Hoe kan ik het binomium van Newton toepassen op (1-x/d)-2? Volgens mijn bron komt er 1+2x/d uit. Maar ik begrijp niet hoe het werkt.

L Dijk
Docent - maandag 20 januari 2020

Antwoord

Het ware handig geweest als je deze link even had meegestuurd want dat was snel duidelijk geweest waar dit over gaat.
Wat daar toegepast wordt is de algemene binomiaalformule van Newton (zie de link hieronder):
$$(1+x)^z = \sum_{k=0}^\infty\binom{z}{k}x^k
$$in het speciale geval $z=-2$ en met $-\frac xd$ op de plaats van $x$ ingevuld. Als we de eerste termen uitschrijven staat er
$$(1+x)^{-2} = 1-2x+3x^2-4x^3+5x^4+\cdots
$$Met $-\frac xd$ ingevuld wordt dat
$$\left(1-\frac xd\right)^{-2}=1+2\frac xd +3\left(\frac xd\right)^2+\cdots
$$en inderdaad, als het quotiënt $\frac xd$ klein is is deze som ongeveer gelijk aan
$$1+2\frac xd
$$Hoe kleiner het quotiënt hoe kleiner de relatieve fout (zie ook hier voor informatie over de afbreekfout).

Zie wikipedia: binomium van Newton

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 20 januari 2020



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3