De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Hoe kun je b uit bx bepalen?

Hoe kun je b uit de formule 'ax2+bx+c' bepalen als je alleen maar gegevens hebt gekregen? Is er nog een andere manier dan beginnen met a (alpha) =-b-2a en dit om te vormen naar b= -a (alpha) ·2a?
Bv.: stel de vergelijking op die de y-as als symmetrieas heeft, door het punt (1.0) gaat en als Y co van de top -3 heeft. Ik hoop dat jullie mij kunnen helpen.

Thibo
2de graad ASO - zaterdag 31 augustus 2019

Antwoord

Hallo Thibo,

Je vraag is nogal onduidelijk: wat is alpha? Wat is de betekenis van de formule alpha = -b-2a?

Je voorbeeldvraag is wel op te lossen. Tenminste, ik neem aan dat je eigenlijk bedoelt: stel de formule op van de parabool die de y-as als symmetrie-as heeft, door het punt (1, 0) gaat en als y-coördinaat van de top -3 heeft.
Dit kan als volgt:

De algemene formule van een parabool is y=ax2+bx+c. Wanneer de y-as de symmetrie-as is, dan geldt b=0. Dan blijft over:

y=ax2+c

De top ligt op de symmetrie-as, in dit geval dus bij x=0. De bijbehorende waarde voor y is -3. Dus:

a·02+c=-3
c=-3

We weten dus al:
y=ax2-3

De parabool moet door het punt (1, 0). Dat betekent: wanneer we x=1 kiezen, dan moet gelden y=0. Ofwel:

a·12-3=0
a-3=0
a=3

Nu is de gehele formule bekend:

y=3x2-3

OK zo?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 31 augustus 2019



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3