|
|
\require{AMSmath}
Re: Diertjes in het bos
Berekening uitgaande van een binomiaal verdeling en toepassing regel van Bayes.
Stel O = aantal diertjes overleden Stel L1 = gemerkte diertje in leven
De kans P(O=1|L1) = 0.47232/0.8 = 0.5904 (59.04%)
Het boek geeft evenwel als uitkomst 48.41% (?)
Luka
3de graad ASO - dinsdag 3 april 2018
Antwoord
Hallo Luka,
Jouw uitwerking is wel erg kort door de bocht. Immers: bekend is dat het gemerkte diertje in leven is. P(gemerkt diertje leeft) is dus 1! Ik begrijp ook niet hoe je aan de teller 0,47232 komt.
Helaas begrijp ik ook niet hoe het boek aan de uitkomst 48,41% komt. Kijk nog eens goed naar de gegevens: kan het zijn dat de overlevingskans 90% is i.p.v. 80%?
Hier komt mijn uitwerking: Eerst maar eens een kansverdeling maken van het aantal diertjes dat na één jaar is overleden, dit aantal noem ik O:
x | 0 | 1 | 2 | 3 | 4 | 5 |
P(O=x) | 0,32768 | 0,4096 | 0,2048 | 0,0512 | 0,0064 | 0,00032 |
Bij elk van deze mogelijke gebeurtenissen bekijken we de kans dat een gemerkt dier als eerste wordt teruggevonden. Wanneer nul diertjes zijn overleden, dan is de kans dat een gemerkt diertje als eerste wordt teruggevonden gelijk aan 1/5. Bij één overleden diertje is die kans 1/4, enz. Onderstaande tabel geeft deze kansen overzichtelijk weer:
x | 0 | 1 | 2 | 3 | 4 | 5 |
P(gemerkt dier als eerste gevonden) | 1/5 | 1/4 | 1/3 | 1/2 | 1 | -- |
Wanneer alle vijf diertjes zouden zijn overleden, dan kan geen diertje worden teruggevangen. Omdat er wel een diertje is gevangen en gemerkt, is de gebeurtenis (5 diertjes overleden) uitgesloten.
De totale kans dat een gemerkt diertje als eerste wordt gevonden, is:
0,32768·1/5+ 0,4096·1/4+0,2048·1/3+0,0512·1/2+0,0064 = 0,2682
De eerste term heeft betrekking op de situatie dat geen enkel dier is overleden. De kans dat minstens 1 dier is overleden èn het gemerkte dier als eerste wordt gevonden, is zodoende hetzelfde, maar dan zonder de eerste term:
0,4096·1/4+0,2048·1/3+0,0512·1/2+0,0064 = 0,2027
De kans dat minstens één dier is overleden, onder de voorwaarde dat het gemerkte dier als eerste is teruggevonden, komt hiermee op:
P(Minstens 1 overleden|gemerkte dier als eerste gevonden) =0,2027/0,26820,756 (75,6%)
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 3 april 2018
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|