|
|
\require{AMSmath}
Primitiveren
Hoi,
Ik ben bezig met het primitiveren van deze functie: $f(x)= \sin(x\sqrt 2)$. Ik kom zelf uit op $g(x)=-\cos(x\sqrt 2)$, maar dit klopt niet. Het juiste antwoord is $-\frac 12 \sqrt 2 \cos(x\sqrt 2)$. Ik snap niet hoe ze op de $-\frac 12 \sqrt 2$ ervoor komen?
sahar
Student universiteit - zondag 28 januari 2018
Antwoord
Hoi Sahar,
Denk eens andersom: als je $g(x)=-\cos(x\sqrt 2)$ gaat differentiëren, dan moet je de kettingregel gebruiken. Tussen haakjes staat immers niet gewoon $x$, maar $x\sqrt 2$.
De afgeleide wordt daarmee $g'(x)= \sin(x\sqrt 2)\cdot\sqrt 2$. Dat scheelt een factor $\sqrt 2$ met $f(x)$. Om die factor te 'neutraliseren' zetten we er bij de primitieve van $f(x)$ dus een factor $\frac{1}{\sqrt 2} = \frac 12 \sqrt 2$ voor. De min stond er al. Zo komt men op het antwoord.
Met vriendelijke groet,
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 29 januari 2018
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|