De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Primitiveren

Hoi,

Ik ben bezig met het primitiveren van deze functie: $f(x)= \sin(x\sqrt 2)$. Ik kom zelf uit op $g(x)=-\cos(x\sqrt 2)$, maar dit klopt niet. Het juiste antwoord is $-\frac 12 \sqrt 2 \cos(x\sqrt 2)$. Ik snap niet hoe ze op de $-\frac 12 \sqrt 2$ ervoor komen?

sahar
Student universiteit - zondag 28 januari 2018

Antwoord

Hoi Sahar,

Denk eens andersom: als je $g(x)=-\cos(x\sqrt 2)$ gaat differentiëren, dan moet je de kettingregel gebruiken. Tussen haakjes staat immers niet gewoon $x$, maar $x\sqrt 2$.

De afgeleide wordt daarmee $g'(x)= \sin(x\sqrt 2)\cdot\sqrt 2$. Dat scheelt een factor $\sqrt 2$ met $f(x)$. Om die factor te 'neutraliseren' zetten we er bij de primitieve van $f(x)$ dus een factor $\frac{1}{\sqrt 2} = \frac 12 \sqrt 2$ voor. De min stond er al. Zo komt men op het antwoord.

Met vriendelijke groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 29 januari 2018



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3