De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Trapeziumregel

In mijn wiskundeboek staat de volgende opgave:
Gegeven: I= $\int{}$ x2ln(x) dx (met als ondergrens 1 en als bovengrens e).

De vraag is nu: benader I met behulp van de trapeziumregel met 3 deelintervallen.

Nu is de trapeziumregel mij geheel duidelijk. Echter als ik de trapeziumregel wil invullen, met als lengte van de deelintervallen (e-1)/3, dan wordt het al gauw heel erg onduidelijk voor mij en raak ik het overzicht kwijt.

Mijn vraag aan u is dan ook: hoe krijg ik de trapeziumregel van deze functie goed overzichtelijk ingevuld.

Met vriendelijke groet,

Erwin

Erwin
Student hbo - maandag 7 augustus 2017

Antwoord

Hallo, Erwin.

Je verdeelt het interval [1,e] in drie gelijke deelintervallen van lengte (e-1)/3, dus
[1,1+(e-1)/3], [1+(e-1)/3,1+2(e-1)/3], [1+2(e-1)/3,1+3(e-1)/3].
Uitwerken geeft [1,(e+2)/3], [(e+2)/3,(2e+1)/3], [(2e+1)/3,e].
Pas op elk van de drie deelintervallen de trapeziumregel toe, bijvoorbeeld voor het tweede deelinterval wordt dit
((e-1)/3)·(f((e+2)/3)+f((2e+1)/3))/2, met f(x)=x2ln(x).
Tel tenslotte de drie uitkomsten bij elkaar op.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 7 augustus 2017



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3