De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Partieel integreren

Beste

Ik moet volgende oefening maken:

'Gebruik eerst partiële integratie en dan substitutie om aan te tonen dat integraal van 0 naar +oneindig van sin2(x)/x2dx gelijk is aan integraal van 0 naar +oneindig van sin2(x)/xdx'

Hoe kom ik hiertoe? Alvast bedankt!
Met vriendelijke groeten
Julie

Julie
Student universiteit - vrijdag 13 mei 2016

Antwoord

Het beste is: gewoon beginnen. Je kunt bijvoorbeeld één van de sinussen primitiveren
$$
\int_0^\infty\frac{\sin^2x}{x^2}\,dx = \left[-\frac{\sin x\cos x}{x^2}\right]_0^\infty-\int_0^\infty -\cos x\left(\frac{x^2\cos x-2x\sin x}{x^4}\right)\, dx
$$
of de hele $\sin^2x = \frac12-\frac12\cos 2x$ primitiveren:
$$
\int_0^\infty\frac{\sin^2x}{x^2}\,dx = \left[\frac{2x-\sin 2x}{2x^2}\right]_0^\infty -\int_0^\infty -\frac{2x-\sin2x}{x^3}\,dx
$$
of $x^{-2}$ primitiveren
$$
\int_0^\infty\frac{\sin^2x}{x^2}\,dx = \left[-\frac{\sin^2x}{x}\right]_0^\infty - \int_0^\infty-\frac{2\sin x\cos x}{x}\,dx
$$
Welk biedt de meeste kansen denk je?

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 14 mei 2016



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3