De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Bewijzen met een delerIk heb alles geprobeerd en van alles opgezocht, maar ik kan deze vraag van wiskunde D, 6 VWO echt niet oplossen. Antwoord$ \begin{array}{l} {\rm{Te}}\,\,{\rm{bewijzen:}}3^{2n + 1} + 2^{n - 1} \,\,{\rm{is}}\,\,{\rm{deelbaar}}\,\,{\rm{door}}\,\,{\rm{7}} \\ {\rm{Stap}}\,\,{\rm{1:}}\,\,{\rm{neem}}\,\,{\rm{n = 1}} \\ 3^{2 \cdot 1 + 1} + 2^{1 - 1} = 3^3 + 1 = 28\,\,{\rm{is}}\,\,{\rm{deelbaar}}\,\,{\rm{door}}\,\,{\rm{7}}{\rm{.}}\,\,{\rm{Klopt}}\,\,{\rm{voor}}\,\,{\rm{n = 1}}{\rm{.}} \\ {\rm{Stap}}\,\,{\rm{2:}}\,\,{\rm{neem}}\,\,{\rm{n + 1}} \\ 3^{2\left( {n + 1} \right) + 1} + 2^{\left( {n + 1} \right) - 1} \,\,{\rm{is}}\,\,{\rm{deelbaar}}\,\,{\rm{door}}\,\,{\rm{7}} \\ 3^{2n + 3} + 2^n \,\,{\rm{is}}\,\,{\rm{deelbaar}}\,\,{\rm{door}}\,\,{\rm{7}} \\ 9 \cdot 3^{2n + 1} + 2 \cdot 2^{n - 1} \,\,{\rm{is}}\,\,{\rm{deelbaar}}\,\,{\rm{door}}\,\,{\rm{7}} \\ 7 \cdot 3^{2n + 1} + 2 \cdot 3^{2n + 1} + 2 \cdot 2^{n - 1} \,\,{\rm{is}}\,\,{\rm{deelbaar}}\,\,{\rm{door}}\,\,{\rm{7}} \\ 7 \cdot 3^{2n + 1} + 2\left( {3^{2n + 1} + 2^{n - 1} } \right)\,\,{\rm{is}}\,\,{\rm{deelbaar}}\,\,{\rm{door}}\,\,{\rm{7}} \\ {\rm{Klopt!}} \\ \end{array} $
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|