De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Balk in piramide met een regelmatig achthoekig grondvlak

Er is een regelmatig achthoekige piramide, met zijdes van 60 cm. De hoogte h van de piramide bedraagt 140 cm. In de piramide wordt een balk geplaatst met lengte en breedte x centimeter en hoogte h centimeter.
  • Wat zijn de maximale maten van x en h waarvan de balk in de piramide past en wat is de inhoud van die balk met deze waarde van x en h?

Bjorn
Leerling bovenbouw havo-vwo - donderdag 5 november 2015

Antwoord

Hallo Bjorn,

Hieronder heb ik het bovenaanzicht en het vooraanzicht van de piramide getekend, met daarin de grijze balk.

q76750img1.gif

In de figuur rechts zie je:

q76750img2.gif

Het blauwe lijnstuk b is een diagonaal van de achthoek, evenwijdig aan een zijde van de balk, zie ook de figuur links.
In deze formule isoleren we h:

q76750img3.gif

q76750img4.gif

Voor de inhoud I van de balk geldt:

q76750img5.gif

dus:

q76750img6.gif

q76750img7.gif

De waarde van b kan je berekenen met behulp van de cosinusregel, toegepast op het gele driehoekje in de linker figuur. Je hebt dan de inhoud I als functie van x. De waarde van x waarbij I maximaal wordt, vind je door de afgeleide van deze functie gelijk te stellen aan nul. Met deze waarde kan je ook de maximale inhoud berekenen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 6 november 2015



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3