|
|
\require{AMSmath}
Re: Blokken bouwen
Ohh, ja ik begrijp al wat ik fout heb gedaan. Maar is het dan de bedoeling dat ik alle mogelijkheden opschrijf of is er een formule waarmee dit sneller kan?
Alvast bedankt!
Narges
Leerling bovenbouw havo-vwo - zondag 14 december 2014
Antwoord
Nou, alle mogelijkheden opschrijven wordt een erg langdurende kwestie, want dan moet je er blijkbaar 1806 te pakken krijgen.
Je kunt in dit verband eens denken aan een telprobleem dat je vast wel bent tegengekomen. Ik bedoel een vraag in de trant van: op hoeveel verschillende manieren kunnen de letters van het woord RADAR gerangschikt worden?
Dan telde je als volgt. Voor 5 letters zijn er in principe 5! = 120 permutaties mogelijk. Maar omdat verwisselen van bijv. de letters A geen nieuw 'woord' oplevert, deel ik door 2! = 2 en zo ook voor de twee letters R. Zo kom je aan 5!/(2!2!) = 120/4 = 30 mogelijkheden. In rijtjes zoals rbrrgrr herken je dan dit zelfde probleem.
Bedenk ook nog dat torentjes zoals bbbbbrg precies het zelfde totaal aantal torentjes opleveren. Maar het is wel een heel gedoe.
MBL
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 14 december 2014
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|