De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Diophantische vergelijking 3 onbekendenDe voorwaarde is dat x,y,z gehele natuurlijke getallen zijn. Ik kan geen oplossingsmethode vinden om het op te lossen naast 'oneindig' oplossingen invoeren. AntwoordAls je de tweede vergelijking door $2$ deelt en dan de eerste er van aftrekt dan krijg je $49x+19y=10800$, of $19y=10800-49x$. Vul dan achtereenvolgens $x=1$, $x=2$, ..., $x=19$ in, onderweg vind je een $19$-voud en dus een oplossing van je stelsel. Door bij de bijbehorende $x$ steeds $19$-vouden op te tellen krijg je nog meer oplossingen. De reden dat dit werkt is dat $\mathop{\mathrm{ggd}}(49,19)=1$; daaruit volgt dat $19y=10800$ een oplossing heeft modulo $49$.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|