|
|
\require{AMSmath}
Wederkerige vergelijking
Wat is een wederkerige vergelijking en wat zijn de oplossingsmethoden?
R.Trie
Iets anders - zondag 9 februari 2003
Antwoord
Beste Rudolf, Uit de prisma van de wiskunde: vergelijking,wederkerige Polynoomvergelijking in 1 variabele, x, van de graad n, waarbij de coefficienten van xk en xn-k gelijk (wederkerige vergelijking van de eerste soort) of tegengesteld (wederkerige vergelijking van de tweede soort) zijn. Als we dus bijvoorbeeld hebben: ax5+bx4+cx3+dx2+ex+f0=0 Dan zijn de coefficienten dus respectievelijk: a,b,c,d,e en f. Volgens bovenstaande definitie moet dan gelden: a = f b = e c = d Vul nu maar wat in bv.: a = f = 3 b = e = 7 c = d = -2 Dan krijg je: 3x5+7x4-2x3-2x2+7x+3=0 Bij de 'tweede soort' moeten we het geheel omdraaien: a = -f b = -e c = -d Vul bijvoorbeeld maar in: a = 1 -> f = -1 b = -4 -> e = 4 c = -2 -> d = 2 Dus krijg je de wederkerige vergelijking van de 2e soort: x5-4x4-2x3+2x2+4x-1=0 M.v.g.
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 9 februari 2003
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|