De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Poisson verdeling

Ik zit met het volgende dilemma:
Claims worden jaarlijks ingediend door verzekerden bij een verzekeringsmaatschappij met een poisson verdeling van l=0,4. De hoeveelheid claims ingediend door twee verschillende verzekerden zijn onafhankelijk. Wat is de kans dat tenminste 1 verzekerde geen claim indiend?

Ik deed: 2[(e^-0,4·0,40)/(0!)·(e^-0,4·0,41)/(1!)]+[(e^-0,4·0.40)/(0!)]2

Maar ik kom steeds uit op: 0,67032·0,26812+0,44932=0,8087.
Het boekt zegt: 0,8913. Wat doe ik fout?

martin
Student hbo - donderdag 26 december 2013

Antwoord

Je rekent (slechts) de kans uit dat beide verzekerden geen claim indienen of dat één van hen slechts één claim indient, maar die ene kan ook tien of nog veel meer claims indienen.
Ik zou de kans berekenen dat beide ten minste één claim indienen en die kans van $1$ aftrekken. Wegens de onafhankelijkheid mag je die kans per verzekerde uitrekenen en de resultaten vermenigvuldigen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 26 december 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3