De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Aantal delers van een natuurlijk getal

hey!

Ik probeer zelfstandig wat getaltheorie in te studeren en bij het onderdeel van deelbaarheid kom ik 'aantal delers van een natuurlijk getal' tegen. zoals u weet, bestaat er hiervoor een formule nl:
t(n)=(a1+1)(a2+1)...(an+1) met ai= exponent van de priemgetal bij de priemfactorisatie voor een willekeurig getal n.

Mijn vraag is nu: hoe moet je deze bewijzen?
Ik dacht misschien dat volledige inductie het gemakkelijkste zou zijn, maar hier ga ik alleen maar intutief op weg. Waarschijnlijk vergis ik me volledig :/
De moeilijkheidsgraad voor mij, is vooral om die exponeneten 'naar beneden' te brengen...

Zou u mij toevallig kunnen helpen?

Alvast bedankt.

Dylan
3de graad ASO - woensdag 31 juli 2013

Antwoord

Iedere deler van n bevat hoogstens ai en minstens 0 factoren pi.
Dat zijn dus ai+1 mogelijkheden.
Vermenigvuldigen hiervan voor alle pi levert de gewenste formule.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 1 augustus 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3