De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

De Moivre

Beste,
Tijdens de oefensessies kregen we volgende opdracht:"Bereken Cos18° zonder rekenmachine en dr gebruik te maken van de regel van de Moivre".

Wat ik mij afvraag is of dit wel kan en hoe eraan te beginnen. Wolfram Aplha geeft helaas ook geen resultaat.
Dank voor de hulp!

Shan
3de graad ASO - maandag 13 mei 2013

Antwoord

De Moivre leert dat (cos(a) + i.sin(a))^5 = cos(5a) + i.sin(5a)
Door het linkerlid uit te werken (veel werk!) volgt hier uit dat
cos(5a) = 16cos^5(a) - 20cos^3(a) + 5cos(a).

Neem nu a = 18 graden.
Dan is cos(5a) = 0 . Voor cos(a) schrijf ik verder alleen maar c.
Uit de gevonden formule volgt dan 16c^5 - 20c^3 + 5c = 0.
Je kunt dit delen door c want c is zeker ongelijk 0.
De vierdegraads vergelijking die je overhoudt kun je oplossen door c2 = C te stellen.
De exacte waarde kun je in Wolphram Alpha vinden door cos(pi/10) in te voeren.


MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 14 mei 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3