De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Derdegraads vergelijkingen

In onze practische opdracht wordt gezegd dat je alle derdegraads vergelijkingen kunt ombouwen tot een type vergelijking die in de formule van Cardano kan worden gevoerd. Een type zoals x3+mx=n
Hoe kun je een type zoals ax3+bx2+cx+d ombouwen tot het type van Cardano??
Wij komen hier niet uit, alvast bedankt.
Jack en Dick

Jack K
Leerling bovenbouw havo-vwo - woensdag 22 januari 2003

Antwoord

Beste Jack,
Het is een hele klus, maar mogelijk.
Je hebt dus een vergelijking van de vorm:
ax3+bx2+cx+d=0
Begin met het definieren van een nieuwe variabele y:
y = x + b/(3a)
Ofwel:
x = y - b/(3a)
Als je dit nu invult in de vergelijking krijg je dus:
a(y - b/(3a))3+b(y - b/(3a))2+c(y - b/(3a))+d=0
Na veel rekenwerk (haakjes wegwerken en vereenvoudigen), is dit te herleiden naar:
ay3+(c-(b2/(27a2)))y+2b3/(27a2)-cb/(3a)+d=0
Door nu alles te delen door a, houd je dan over:
y3+((c-(b2/(27a2)))/a)y+(2b3/(27a2)-cb/(3a)+d)/a=0
Neem nu:
p = ((c-(b2/(27a2)))/a)
q = (2b3/(27a2)-cb/(3a)+d)/a
Dan blijft er dus over:
y3+py+q=0
Hopelijk is zo je vraag voldoende beantwoord.

M.v.g.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 22 januari 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3