|
|
\require{AMSmath}
Goniometrische functies
f(x)=cos(6px/2+ax2) punt x=1 heeft f(x) een nulpunt en bereikt f(x) ook een maximum.
a) bepaal parameter a b) nulpunten f(x) en all punten waar f(x) een extreme waarde bereikt c) grafiek van f een asymptoot? zo ja, bereken de asymptoot
a) f(1)=cos(6p/2+a)=0 we weten cos(3p/2)=0 dus stellen we het volgende gelijk aan elkaar om a te vinden 6p/2+a=3p/2 a=2 maar de cos van (p/2) is toch ook gelijk aan 0 waarom kom ik dan een andere a waarde uit?
b) hoe moet ik van deze functie de nulpunten zoeken? om te weten waar f(x) een extreme waarde bereikt moet ik de afgeleide van f(x) bereken, dit deed ik dan ook en kwam het volgende uit =-sin(6px/2+ax2)·6p((2-ax2)/(2+ax2)2) ik weet dus ook niet hoe ik hier de nulpunten moet van berekenen?
c)als je op de grafiek kijkt moet f(x) een asymptoot hebben in y=1 berekening: lim x-±¥ cos(3px/1+x2) zou moeten uitkomen op cos 0 = 1 = y=1 maar hoe kom ik aan die cos 0 vanuit de limiet?
robin
3de graad ASO - zaterdag 16 oktober 2010
Antwoord
Hallo Voor alle hoeken $\pi$/2+k.$\pi$ is de cosinus gelijk aan 0 en vind je inderdaad verschillende waarden voor a. Maar vermits er ook een extreme waarde moet bereikt worden, moet ook de afgeleide gelijk zijn aan 0. In b) heb je de afgeleide berekend. Hierin zit de factor 2-ax2. Voor x=1, wordt dit 2-a en dit is gelijk aan 0 voor a=2. De functie wordt dus y = 3$\pi$x/1+x2 Nulpunten heb je als 3$\pi$x/1+x2 = $\pi$/2 + k.$\pi$ (met k telkens een geheel getal) Dit is een vierkantsvergelijking. Bereken hiervan de discriminant en je zult zien dat deze gelijk is aan 0 voor k=-2 of k=1, en positief voor k=-1 of k=0. Voor k=-2 en k=1 vind je een dubbel nulpunt (x=-1 en x=1). Voor k=-1 en k=0 vind je twee enkelvoudige nulpunten (x=-0.17 en -5,8; en x=0.17 en 5,83) Voor de extreme waarden bereken je de nulpunten van de afgeleide. De factor 1-x2 geeft de nulpunten x=-1 en x=1 De sinus is gelijk aan 0 als 3$\pi$x/1+x2 = k.$\pi$ Dit geeft weer een vierkantsvergelijking, waarvan de discriminant positief is voor k=-1, k=0 en k=1 Voor k=-1 vind je x=-0.38 en x=-2.62 Voor k= 1 vind je x= 0.38 en x= 2.62 Voor k=0 vind je x=0 Een horizontale asymptoot heb je voor x$\to\infty$ Voor x$\to\infty$ wordt 3$\pi$x/1+x2 gelijk aan 0 en cos(0) = 1 Ok?
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 18 oktober 2010
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|