De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Integraal uitrekenen via de cauchy integraal formule

Hallo,

De vraag is de contourintegraal 1/2pi òg1/(z-1)(z-2i)dz uit te rekenen, waar g de cirkel is met 0 als middelpunt en een straal van 4.

Aangezien deze formule 2 singulariteiten heeft, 1 en 2i, is dit te schrijven in 2 delen: één integraal met g als pad de cirkel rond singulariteit 1 en één integraal met g als pad de cirkel rond singulariteit 2i.

Stel we beschouwen de eerstgenoemde integraal: 1/2pi òf1/(z-1)(z-2i)dz met f de cirkel rond singulariteit 1. Dit moet nu op te lossen zijn via de cauchy integraal formule f(z) = 1/2pi ògf(z)/z-z, maar ik zie niet in hoe.

z wordt de singulariteit 1, maar wat wordt bijvoorbeeld f(z)?

Alvast bedankt!

Donald
Student universiteit - zondag 1 augustus 2010

Antwoord

Wel. de 1/(zeta-1) komt in de formule tot uitin; wat overblijft moet dan f(zeta) zijn, dus f(zeta)-1/(zeta-2i).

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 3 augustus 2010



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3