De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Integraal uitrekenen

Mij is gevraagd het volgende uit te rekenen.

ò1/cos(x) dx

Ik heb een uitwerking hiervan, alleen snap ik niet hoe ze er zo snel opkomen. Daarom is mijn vraag of iemand een eenvoudigere uitwerking heeft waarbij er meer stappen zijn gebruikt? Dan kan ik het namelijk beter begrijpen.

Dit is de uitwerking die ik bedoel
ò1/cos(x) 1/cos(x) = sec(x)

dus òsec(x) dx

òsec(x)(sec(x)+tan(x))/((sec(x)+tan(x)) dx

òsec2(x) + sec(x)tan(x)/((sec(x)+tan(x)) dx

Gekozen voor substitutie, namelijk u = sec(x)+tan(x)
du = sec2(x)+sec(x)tan(x)

dus ò1/u dx

ln(u)

dus het antwoord is ln(sec(x)+tan(x))

Ik begrijp de uitwerking wel, maar is er geen manier waarbij je meer stappen gebruikt om tot het antwoord te komen? Een soort van denkrichting? die ik dan altijd kan hanteren ? Want op deze uitwerking zou ik niet kunnen komen.

Bij voorbaat dank,

Peter

Peter
Student universiteit - vrijdag 12 maart 2010

Antwoord

Beste Peter,

Door teller en noemer met cos(x) te vermenigvuldigen en de grondformule van de goniometrie te gebruiken, krijg je:

1/cos(x) = cos(x)/cos2(x) = cos(x)/(1-sin2(x))

Gebruik nu de substitutie y = sin(x), de integrand wordt dan de rationale functie 1/(1-y2) en je kan verder met breuksplitsen.
Je komt ook tot dit resultaat door de zogenaamde t-formules op de oorspronkelijke integraal toe te passen, stel t = tan(x/2).

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 12 maart 2010



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3