De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Particuliere oplossing van een RC netwerk

Ik zit met het volgende probleem:

Een RC netwerk, R= 2 C=1.

De bijbehorende diff vergelijking: X(t) = RCY'(t)+Y(t)
Randvoorwaarde Y(o) = 0

Voor X(t) geldt het volgende:

0 voor t0
1 voor 0t1
0 voor t 1

De vraag: bepaal de responsie y(t)

Oplossen,

Homogene oplossing
RCY'(t)+Y(t)=0
na het scheiden van variabelen blijft het volgende over:
dy/y = -(1/RC) dt

Nu aan beide zijden onbepaald integreren geeft:

LN Y = -(1/RC) * t +C

Nu expliciet schrijven geeft als uiteindelijke homogene oplossing:

Y = (e^-1/RC *t) *C

Nu wil ik eigenlijk ook de particuliere oplossing op eenzelfde manier helemaal uitschrijven, alleen ik zit met die X(t) in de knoop. (van de originele diff vergelijking)Ik weet niet meer hoe ik nu verder moet.

Hopelijk kunnen jullie me weer op weg helpen....

groet
Edwin

Edwin
Student hbo - vrijdag 6 februari 2009

Antwoord

Edwin,
Je hebt de verg:y'(t)+1/2y(t)=1/2x(t).Vermenigvuldig beide leden met
exp(1/2t).Dan krijg je:d exp(1/2t)y(t)=1/2exp(1/2t)x(t)dt.Integreren geeft als oplossing y(t)=1-exp(-1/2t),voot t tussen 0 en 1.
Gegeven de x(t) kun je natuurlijk aps particuliere oplossing nemen y(t)=1 voor t tussen 0 en 1 en daarbuiten 0.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 6 februari 2009
 Re: Particuliere oplossing van een RC netwerk 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3