De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Het opstellen van een integraalvergelijking

Hallo,

Deze vraag heeft te maken met mijn huiswerk, maar ik zal proberen hem zo algemeen mogelijk te houden.

Gegeven is:
"Gegeven is de functie f(x) = (2x2 + 3x)e^-x. F(x) = (ax2 + bx + c)e^-x is een primitieve functie van f(x). Bereken a, b, c."

Ik heb op veel verschillende manieren geprobeerd a, b, en c te vinden. Ik heb gekeken naar nulwaarden, buigpunten, de kenmerken van een afgeleide t.o.v. een bepaalde functie etc., maar ik zou niet weten hoe ik de vergelijking moet oplossen. Bovendien heb ik de primitieve door mijn GRM laten tekenen. En welke waarden ik daarna ook voor a, b, of c invulde in de algemene formule voor F(x), geen van de ontstane grafieken vertoonde hetzelfde verloop als de primitieve die mijn GRM had laten zien. Nu heb ik twee vragen:

1. Klopt de vorm van F(x)? Ik zat meer te denken aan de vorm F(x) = (ax3 + bx2 + [cx?])e^-x.
2. In welke richting moet ik werken, om tot een oplosbare vergelijking voor a, b, of c. te komen. Ik meen overigens, dat als de vorm van F(x) wel goed is, c = 0, aangezien de grafiek van de primieve op mijn GRM door de oorsprong gaat.

Ik hoop dat u iets aan dit vage verhaal bebt. In ieder geval al vast bedankt.

Met vriendelijke groet,

Edith Liemburg

Edith
Leerling bovenbouw havo-vwo - zaterdag 7 december 2002

Antwoord

Eigenlijk is het heel simpel, daarom kom je er niet op...:-)
Bepaal de afgeleide van F(x)=(ax2+bx+c)·e-x.
Deze F' moet natuurlijk gelijk worden aan:
f(x)=(2x2+3x)·e-x.

Stop NU met lezen en probeer het eerst zelf!


Kom je er niet uit, dan kan je verder lezen!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

De afgeleide van F(x)=(ax2+bx+c)·e-x is:
f(x)=(ax2+bx+c)e-x·-1+(2ax+b)e-x
(produktregel en kettingregel!)
En als je dat vereenvoudigt:
f(x)=(-ax2-bx-c+2ax+b)·e-x
f(x)=(-ax2+(2a-b)x+(c-b))·e-x
Nu weet ik een heleboel:
-a=2
2a-b=3
c-b=0
Waarmee je er volgens mij dan uit bent!?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 7 december 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3