De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Snijlijn bepalen van twee vlakken

 Dit is een reactie op vraag 53733 
Oke, Ik denk er iets uit op te kunnen maken nl. het volgende:
Het homogene gedeelte (reeds verteld en gelijkgesteld aan nul) staat dus voor het vlak g. als we nu een vectorvoorstelling willen hebben nemen we het verschil tussen vector m en n. zodat:
g = (1,1,1)T-(2,1,-3)T=(-1,0,4)T zodat de vector voorstelling uitkomt op:
x=1-t, y=-2 en z=4t (waarbij t de parameter is)
Is dit een mogelijke vector voorstelling?

Reinie
Student hbo - zondag 6 januari 2008

Antwoord

Het gevonden vlak is 2x+y-3z=0 en heeft normaalvector (2,1,-3).
Nu moet je twee onafhankelijke richtvectoren zoeken en die vind je door ervoor te zorgen dat het inproduct met de normaalvector gelijk is aan 0.
Er is een oneindige keuzevrijheid. Neem bijvoorbeeld (-1,2,0) en ga na dat het inproduct met de normaalvector gelijk is aan 0.
Zoek nu nog een tweede (maar geen veelvoud van de mijne!) en je bent er.
Je vv. wordt dan (x,y,z) = (0,0,0) + $\lambda$(-1,2,0) + $\mu$(jouw vector).

MBL

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 7 januari 2008



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3