De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Tijdsconstante, linearisatie van logaritmische functies

Hallo,
in een oefening kreeg ik een tabel met het percentage levende patienten in functie van het aantal jaren verlopen na het geven van een bepaald geneesmiddel.Via linearisatie van y=A . e^(alfa.t) heb je dan log y = log A + alfa .t. log(e). A kon ik bepalen en alfa ook aan de hand van de gegevens nl nulpunt en afgeleide. Maar dan moest je de tijdsconstante berekenen en ik weet niet hoe je dat kunt doen...; hoe via alfa en hoe via halveringstijd?

Dank bij voorbaat

sfiew
Student universiteit België - zondag 2 december 2007

Antwoord

Beste Sofie,
Ik neem aan: y=percentage levende patiënten.
Teken een grafiek waarin je log(y) uitzet tegen t.
Als de gegevens kloppen met een exponentiële functie (y=A*eat), dan moet die grafiek een recht lijn opleveren.
De helling is dan alog(e) en als t=0 geldt: A=y.
Je vraag is echter: bereken de tijdsconstante.
Bedoel je daarmee de halveringstijd? Los op: eat=1/2.
dus: t=log(1/2)/(alog(e))
Was dat de bedoeling?
Zoniet, dan hoor ik het wel.

ldr
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 2 december 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3