De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Zonder l`HOPITAL

Is de limiet van sin2(x)/x voor x nadert naar 0 ook te bepalen zonder l'Hopital te gebruiken?

Piet
Student hbo - woensdag 31 oktober 2007

Antwoord

Beste Piet,
Het lijkt me zelfs een omweg om l'Hopital te gebruiken.
lim sin2(x)/x=lim sin(x)·sin(x)/x =lim sin(x)·lim sin(x)/x=0·1=0
Het laatste, een standaard limiet, kan je ook bewijzen zonder de regel van l'Hopital:
1$<$x/sin(x)$<$1/cos(x), voor alle x$\in$(0,$\pi$/2)
dus cos(x)$<$sin(x)/x$<$1
limiet cos(x)=1, dus sin(x)/x zit ingesloten tussen bijna 1 en 1.

ldr
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 31 oktober 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3