De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Hoek tussen 2 vlakken

Hallo wisfag,

Hoe bereken ik de hoek tussen 2 snijdende vakken zijnde:
$\alpha$: -x+y+z=1 en $\beta$:x-y+z=1 ?Toch wat moeite mee?
Vriendelijke groeten

Rik Le
Ouder - zaterdag 27 oktober 2007

Antwoord

Beste Rik,

De hoek tussen twee vlakken kan je berekenen door de hoek te berekenen tussen de normaalvectoren.(loodrecht op die vlakken)

De normaalvector van vlak ax+by+c=d is: (a,b,c)
Nu geldt: q52705img1.gif
Hierin zijn u en v de beide normaalvectoren.
In de teller staat het inwendig product .Je neemt daarvan de absolute waarde, omdat je onder de hoek tussen twee lijnen altijd de kleinste hoek kiest.
In de noemer staat het product van de absolute waarden van u en v.

Zie voor een voorbeeld:Zou het zo lukken?

ldr
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 27 oktober 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3