De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Re: Wat is een parametervergelijking?
Hartstikke bedankt voor uw uitgebreide antwoord. Toch nog een laatste vraagje en dan hou ik het er even bij. Is het nu zo dat je een parametervoorstelling altijd kunt omzetten naar een niet-geparametriseerde vorm. Dus in de vorm van bijv. x3+21x2y2+2x-3y=0 etc.? Voor zover ik dit heb geprobeerd is dit veel moeilijker dan omgekeerd. AntwoordJa, om de eenvoudige reden dat elke kromme (of je ze nu geparametriseerd voor je hebt liggen of niet) en algemeen elke deelverzameling van het vlak te schrijven is als f(x,y)=0, met f een of andere functie die nul is als het punt (x,y) tot de kromme/deelverzameling behoort en anders niet.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|