De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Formule voor de hoek tussen wanden van piramides met verschillende regelmatige

Ik wil een toren maken van multiplex met als basis een regelmatige n-hoek waarvan de wanden onder x graden staan (spitse piramide) met daarop een dakje met een helling van x graden (platte piramide). Hoe bereken ik de (gedeelde) hoek tussen de wanden cq. dakplaten? Is hier een formule voor?

Dennis
Iets anders - maandag 7 mei 2007

Antwoord

Hoi Dennis,

Ik teken even het voorbeeld van een vijfhoekig grondvlak.

q50644img2.gif

neem OA=1 (voor de hoeken maakt dat niet uit)
1/AT = cos(x)
AT = 1/cos(x)

M is het midden van AE
OAM is een rechthoekige driehoek.
AM = sin(180°/n)

cos(ÐMAT) = AM/AT = cos(x)sin(180°/n)

om hem af te knotten zaag je driehoek ATE op de juiste hoogte af evenwijdig aan AE.

Lukt het hiermee? Groet. Oscar

os
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 8 mei 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3