De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Poolvergelijkingen

 Dit is een reactie op vraag 48752 
Deze vraag boeit mij zeer. Graag wil ik aan u voorleggen of mijn uitwerking juist is.

De poolvergelijking uitdrukken in een carthesische vorm geeft: r2-8y+12=0. De algemene vergelijking van een cirkel is r2=x2+y2. Beide vergelijkingen verwerken in een stelsel geeft: r2=8y-12 Ù 8y-12=x2+y2 Û -y2+8y-12=x2. Stel nu x = 0 Û y2-8y+12=0 Û (y-2)(y-6)=0 Û y=2 Ú y=6. Dus op de cirkel liggen de punten (0,2) en (0,6). Het middelpunt is dus (0,4) en de straal is dus 2.

Tom
Leerling bovenbouw havo-vwo - dinsdag 23 januari 2007

Antwoord

Hallo Tom

Bij de omzetting naar de cartesische vergelijking stel je tegelijkertijd
r.sin(q)=y, (eventueel r.cos(q=x) en r2 = x2+y2
Dus is de cartesische vergelijking : x2 + y2 - 8y + 12 = 0

Door x=0 te stellen zoek je de snijpunten met de y-as, deze zijn inderdaad (0,2) en (0,6)
De grafiek is :

q48803img1.gif

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 24 januari 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3