De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vergelijking met een logaritme omkeren

Ik wil de volgende vergelijking omkeren. Dat wil zeggen: de A is nu niet meer mijn onbekende, maar de C.

A = b/C * ln (1 + C/(b*d))

Jop Pl
Iets anders - donderdag 17 oktober 2002

Antwoord

Hoi,

Neem x=C/(bd) en p=Ad, dan kan je je vergelijking schrijven als
Ad.C/(bd)=ln(1+C/(db)) of: p.x=ln(1+x).
Grafisch kan je dit zien als zoeken naar de snijpunten van de rechte y=px en y=ln(1+x).
Eén snijpunt vinden we zo: x=0.
De raaklijn aan y=ln(1+x) heeft rico=1 in x=0. Voor p=1 is x=0 dus de enige oplossing.
Voor p > 1 krijgen we een tweede snijpunt in ]-1,0[.
Voor 0 < p < 1 krijgen we een tweede snijpunt in ]0, ¥[
en voor p <= 0 krijgen we enkel x=0 als oplossing.
(Je kan dit bestuderen door het verloop van f(x)=ln(1+x)-px te bekijken en te zien dat lim(x®¥:ln(1+x)-px)=-¥)

Voor x=0 zou C=0 en daarvoor is je oorspronkelijke vergelijking niet gedefinieerd. We moeten dus enkel de gevallen met p > 1 (als C < 0 ok is) en 0 < p < 1 (als C > 0 ok is) bekijken.

Ik vrees dat dit enkel numerisch verder kan opgelost worden.

Groetjes,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 17 oktober 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3