De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Meetkundige plaats

Men heeft een driehoek PQR met twee vaste hoekpunten P(0.0) en q(4.0) het derde hoekpunt r ligt op de rechte r met voorschrift y=-x+2.
Nu moeten we aantonen dat de meetkundige plaats van de hoogtepunten van de driehoek PQR de grafiek van de functie y=(x2-4x)/(x-2)Ik heb gevonden dat je het punt R kan schrijven als R(a, 2-a) met a variabel. En dan zit ik een beetje vast. Moet ik nu de vergelijkingen bepalen van de hoogtelijnen?
Wouter

Wouter
3de graad ASO - dinsdag 31 oktober 2006

Antwoord

Beste Wouter,

Je bent goed bezig, nu moet je inderdaad de vergelijking van de hoogtelijnen vinden. Maar: je weet dat de drie hoogtelijnen elkaar snijden in het hoogtepunt, dus het volstaat het snijpunt te zoeken van twee hoogtelijnen (de derde moet er dan automatisch doorgaan, eventueel ter controle na te rekenen). Kies dus de twee gemakkelijkste hoogtelijnen, welke zijn dat?

Elimineer vervolgens de parameter a en je vindt direct de gegeven functie.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 31 oktober 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3