De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Raaklijn bepalen

Bereken de raaklijn aan de kromme x^3y+xy^3=12 in het punt (2,1) ant. 7x+10y=24

Ik zou de opgave als volgt doen:

3x2+x3.(dy/dx)+2y3+3y22x(dy/dx)

3x2y+2y3+(x33y22x)(dy/dx)

(dy/dx)=(-3x2y-2y3)/(x3+3y22x)=-14/20=-0,7

1=-0,7*2+b
b=2,4

y=-0,7x+2,4

Wat doe ik verkeerd?

Ronald
Student universiteit - woensdag 11 oktober 2006

Antwoord

Volgens mij zit je warm:

y=-0,7x+2,4
links en rechts maal 10:
10y=-7x+24 Û
7x+10y=24

groeten,
martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 11 oktober 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3