De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Symmetrische matrices met nullen en enen

Geachte redactie van Wisfaq,

Ik heb het volgende probleem:

Gegeven een symmetrische n bij n matrix met uitsluitend nullen en enen. Op de hoofddiagonaal staan bovendien allemaal enen.

Te bewijzen dat er altijd minstens 2 rijen in de matrix zijn met evenveel enen.

Het klopt idd voor 2 bij 2, 3 bij 3 en 4 bij 4 matrices, maar de stelling bewijzen voor algemene n, lukt me niet.

Kunt u mij misschien op weg helpen?

Bij voorbaat mijn dank.

Rob va
Leerling bovenbouw havo-vwo - woensdag 4 oktober 2006

Antwoord

Hallo,

Probeer eens uit het ongerijmde? Dus stel dat je zo een matrix hebt, en het aantal enen per rij is telkens verschillend, variërend van 1 tot n. Dus komt elk aantal (1,2,...,n) exact één keer voor.

Er is dus een i-de rij met juist één 1, en er is een j-de rij met n enen (dus allemaal enen). Wat is dan het element op de (i,j)-plaats? En op de (j,i)-plaats? Kom je er zo?

Groeten,
Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 5 oktober 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3