De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Moeilijke vraagstelling

Ik begrijp helemaal niet wat je moet doen.
De vraag:
Bepaal het midden van het lijnstuk dat door een willekeurige raaklijn aan de hyperbool wordt afgesneden op de topraaklijnen.

Al bij de interpretatie van de vraag loopt het bij mij helemaal mis. Zouden jullie mij een duwtje in de goede richting kunnen geven (eventueel met een tekening)?

Alvast veel dank

Elly
3de graad ASO - zondag 18 juni 2006

Antwoord

Hallo Elly

We nemen de hyperbool x2/a2 - y2/b2 = 1
Op de onderstaande tekening is a = 4 en b = 3.
a is de raaklijn in het punt A(x0,y0) aan de hyperbool.
De vergelijking van a is dan
x0.x/a2 - y0.y/b2 = 1

De vergelijkingen van de topraaklijnen t1 en t2 zijn x = a en x = -a
De snijpunten van de raaklijn a met de twee topraaklijnen zijn resp. B en C.
De coördinaten van deze snijpunten zijn te vinden door in de vergelijking van de raaklijn, x te vervangen door resp. a en -a.

Bepaal het midden van het lijnstuk [BC].
Dit midden zal natuurlijk op de y-as liggen.
(Je zult vinden : (0,-b2/y0).)

Je kunt in de applet het punt A verplaatsen en je resultaat testen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 19 juni 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3