De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Projectieve meetkunde: projectief vs affien karakter

Meetkundige begrippen kunnen worden geclassificeerd naar hun metrische, affien en/of projectief karakter.

Metrische (Euclidiche) begrippen zijn bijvoorbeeld de begrippen vierkant en rechthoek.
Begrippen of eigenschappen die bewaard blijven bij parallelprojectie noem je affiene begrippen of eigenschappen, daarom is een vierkant geen affien begrip maar een parallellogram weer wel.
Begrippen en of eigenschappen die ook nog eens bestand zijn tegen centrale projectie worden projectieve begrippen genoemd. Een parallellogram is geen projectieve eigenschap, maar een vierhoek weer wel.

Mijn vraag gaat over de manier hoe je kan zien of iets nou wel of niet affien of projectief eigenschappen bezit.
Hoe zit dat b.v. met: een koordenvierhoek, een bissectrice, een zwaartelijn en evenwijdige lijnen?

Ik verwacht zelf dit, maar is dat ook waar?
Koordenvierhoek Affien en Projectief
Bissectrice Affien en Projectief
Zwaartelijn Affien
Evenwijdige lijnen Affien

Ik kan het alleen niet uitleggen dus lijkt dit veel te veel op een gok...
Wie kan dit aan mij uitleggen waarom b.v. een zwaartelijn wel of niet affien / projectieve eigenschappen bezit??
Dank

Joop S
Student hbo - zondag 4 juni 2006

Antwoord

Bij een koordenvierhoek liggen de hoekpunten op een cirkel. Is een cirkel een affien of projectief begrip? Lijkt me niet, dus een koordenvierhoek ook niet.

Is de waarde van een hoek affien of projectief begrip? Dat lijkt me niet dus een bissectrice ook niet.

Een zwaartelijn van een driehoek loopt van hoekpunt naar het midden van de overliggende zijde. Is een driehoek een affien begrip? En het midden? Beide antwoord 'ja', dan is zwaartelijn een affien begrip!

Het midden is geen projectief begrip dus zwaartelijn ook niet.

Hopelijk helpt deze 'luchtige uitzetting' een beetje...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 10 juni 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3