De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Groep van priemordeHoe bewijst men dat een groep G van orde p, met p een priemgetal, isomorf is met de cyclische groep van orde p. AntwoordNeem een element a ongelijk aan het eenheidselement e; de orde van a is een deler van de orde van G, dus die orde is 1 of p. Het kan niet 1 zijn want a is niet e, dus is de orde p; maar dat betekent dat {e,a,a2,..., ap-1} uit p verschillende elementen bestaat en dus gelijk is aan de hele G.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|